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Abstract. Forest net primary productivity (NPP), representing the biomass carbon gain from the atmosphere, varies 

significantly with forest age. Reliable forest NPP-age relationships are essential for forest carbon cycle modelling and 

prediction. These relationships can be derived from forest inventory or field survey data, but it is unclear which model is the 15 

most effective for simulating forest NPP variation with age. Here, we aim to establish NPP-age relationships for China’s forests 

based on 3121 field survey samples. Five models, including the Semi-Empirical Mathematical (SEM) function, the Second-

Degree Polynomial (SDP) function, the Logarithmic (L) function, the Michaelis-Menten (M) function, and the Γ function, 

were compared against field data. Results of the comparison showed that the SEM and the Γ function performed much better 

than the other three models. SEM also outperformed the Γ function in tracking forest NPP-age curves at old ages and therefore 20 

is regarded as the best NPP-age model. The finalized forest NPP-age curves for five forest types in six regions of China can 

facilitate forest carbon modelling and future carbon projections in China and may also be useful for other regions. 

1 Introduction 

Forests play a critical role in sequestering atmospheric carbon dioxide (Hicke et al., 2007; Liu et al., 2012; Eggleston et al., 

2006; Pan et al., 2011) and mitigating climate change (Friedlingstein, 2020). Forest net primary productivity (NPP), which 25 

represents the biomass carbon gain from the atmosphere (Fang et al., 2001; Chapin et al., 2006), constitutes the largest 

component of the terrestrial carbon cycle (Alexandrov et al., 1999; Hasenauer et al., 2004; Zha et al., 2013; Zhao and Zhou, 

2005). It varies significantly with forest age (Bond-Lamberty et al., 2004; Wang et al., 2007, 2011), featured by an initial 

increase at young ages, a maximum at a middle age, and then a gradual decline at old ages (Yu et al., 2017; He et al., 2012). 

Building forest NPP-age curves is therefore essential in forest carbon modelling (Luyssaert et al., 2008).  30 

Forest NPP-age curves differ considerably for different regions and forest types due to their unique compositions and diverse 

growth environments (Yu et al., 2017; He et al., 2012). In Europe (Zaehle et al., 2006), Canada (Chen et al., 2003), and America 

(Guo et al., 1955; He et al., 2012), forest NPP-age curves have been established for different forest types or regions. However, 

these curves can’t be directly used for China’s forest carbon modelling. To address this issue, some studies have tried to build 

forest NPP-age curves in China. Yu et al. (2017) established forest NPP-age curves for twelve major forest types in 35 

Heilongjiang province using forest inventory data and yield tables. Wang et al. (2018) derived forest NPP-age curves for nine 

pure forest types with different site indices within Heilongjiang province using the yield tables, biomass equations, and forest 

inventory data. Zheng et al. (2019) built two forest NPP-age curves separately for coniferous and broad-leaved forests in 

Zhejiang province using forest inventory data. But these curves are limited to the provincial level (currently only available in 

Heilongjiang and Zhejiang provinces), and cannot represent the diverse growth status of China’s forests. Wang et al. (2011) 40 

constructed five forest NPP-age curves for five representative forest ecosystems in China, but the NPP data used to build these 

curves were obtained from the simulations of the BEPS (Boreal Ecosystem Productivity Simulator) model (Chen et al., 2012; 

Ju et al., 2006; Liu et al., 2002, 1999), not forest inventory data or field survey data. Furthermore, these curves didn’t consider 

the significant differences in forest and climate conditions between the north and south of China and were insufficient to 
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differentiate the north-south variations in China (Dai et al., 2011). Therefore, it is essential to develop forest NPP-age curves 45 

for the entire China with consideration of the differences in regions and forest types.  

There were some models that could be used to simulate the forest NPP-age curves (Chen et al., 2003; Yu et al., 2017; He et 

al., 2012; Peper et al., 2001; Semenzato et al., 2011; Dalgleish et al., 2015; Tang et al., 2014). The Semi-Empirical 

Mathematical (SEM) function was first developed for simulating NPP-age relationships in Canada (Chen et al., 2003), America 

(He et al., 2012), and China (Wang et al., 2011; Yu et al., 2017; Wang et al., 2018; Zheng et al., 2019). The Second-Degree 50 

Polynomial (SDP) function, Logarithmic (L) function, Michaelis-Menten (M) function, and Γ function were used to build the 

NPP-age relationships for the boreal and temporal forests (Tang et al., 2014). The L function was mainly used to construct the 

relationship between diameter at breast height (DBH), forest height, and forest age (Peper et al., 2001; Semenzato et al., 2011; 

Dalgleish et al., 2015), and it was also used to model NPP-age relationships (Tang et al., 2014) as forest NPP is related with 

DBH and forest height. The M function is a common mathematical model used to describe enzyme reaction kinetics (Do et al., 55 

2022), and was also found to be suitable for relating carbon fluxes to forest age (Tang et al., 2014). The Γ function was 

demonstrated to have better performance than the SDP function, L function, and M function in building the NPP-age 

relationships for the boreal and temporal forests (Tang et al., 2014). Different models could show diverse performance in 

tracking forest NPP-age curves for different forest types and regions. To facilitate the forest carbon modelling, it is crucial to 

compare these models in building forest NPP-age curves across diverse forest types and regions in China.  60 

There are two objectives of this study: (1) to build forest NPP-age relationships for the entire China considering differences 

in regions and forest types based on forest field survey data and remote sensing data, and (2) to compare five models and 

determine the optimal model in building forest NPP-age relationships across China. As 33%−50% of forest NPP is allocated 

to foliage and fine roots each year (Gower et al., 1997), the forest field NPP was calculated from forest field survey data 

considering three components (Chen et al., 2002; He et al., 2012): total biomass increase (sum of the stem, branch, and coarse 65 

root biomass), turnovers of foliage, and turnovers of fine roots in the soil. To capture the diverse NPP-age relationships across 

different regions and forest types in China, we classified the country into six regions and five representative forest types.  

2 Study Area and Data 

2.1 Study area 

China is selected as the study area, and its forests include five cover types: Evergreen Broad-leaved Forests (EBF), Evergreen 70 

Needle-leaved Forests (ENF), Deciduous Broad-leaved Forests (DBF), Deciduous Needle-leaved Forests (DNF), and Mixed 

Forests (MF). According to China's geographical division (Fang et al., 2001), the study area was divided into six regions (Fig. 

1): Northeast China (NE), North China (N), Northwest China (NW), East China (E), Southwest China (SW), and South China 

(S). Significant differences in forest cover types can be observed among different regions. Region NE (including Heilongjiang, 

Jilin, and Liaoning provinces) is a typical boreal forest in the world and the most significant natural forest area in China. 75 

Region N (including Beijing and Tianjin cities, and Hebei, Shanxi, and Inner Mongolia provinces) accounts for 14% of China's 
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total forest area and is mainly composed of DBF and ENF. Regions NW (including Gansu, Ningxia, Qinghai, Shanxi, and 

Xinjiang provinces) only account for 2.57% of the total forest area in China. Region E (including Shanghai City and Jiangsu, 

Zhejiang, Anhui, Fujian, Jiangxi, Shandong, and Taiwan provinces) accounts for 14% of China's total forest area, and its 

forests show significant zonal characteristics. Region SW (including Yunnan, Sichuan, Xizang, Guizhou, and Chongqing 80 

provinces) is the second-largest natural forest area in China, accounting for 26% of China's total forest area and 43% of China's 

forest stock (Liu et al., 2021). Region S (including Henan, Hubei, Hunan, Guangdong, Guangxi, and Hainan provinces) 

accounts for 20% of the total forest area in China with a large proportion of planted forests.  

 

Figure 1. Distribution of forest field survey sites and their forest cover types (different colour indicates different types) within the six regions 85 
of China. E: Northeast China; N: North China; NW: Northwest China; E: East China; S: South China; SW: Southwest China; EBF: Evergreen 

Broad-leaved Forests; ENF: Evergreen Needle-leaved Forests; DBF: Deciduous Broad-leaved Forests; DNF: Deciduous Needle-leaved 

Forests; MF: Mixed Forests. 

2.2 Data 

The forest field survey data (Fang et al., 2018) and the GLOBMAP Version 3 LAI product (Liu et al., 2012) were used to build 90 

forest NPP-age curves for different regions and forest types. 
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The forest field survey data includes 3121 sampling sites across China (Figure 1) except for Taiwan, Hongkong, and Macao 

(Fang et al., 2018). It includes 585 EBF sites, 1340 ENF sites, 745 DBF sites, 196 DNF sites, and 255 MF sites. These sites 

were selected according to their representativeness of the forest types in a given area, and they were sampled using the method 

outlined by the Intergovernmental Panel on Climate Change (IPCC) (Tang et al., 2018). This dataset records the site location, 95 

survey time, forest cover type, stand age, forest aboveground biomass, forest underground biomass, and so on. These attributes 

were first used to calculate the forest field NPP and then build the forest NPP-age curves.  

The GLOBMAP Version 3 LAI product (Liu et al., 2012) was mainly used in the calculation of forest foliage biomass as 

part of NPP. It provides consistent long-term global leaf area index (LAI) data at 500 m spatial resolution from 1981 to 2022 

on a geographical grid by fusion of Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High-100 

Resolution Radiometer (AVHRR) data. According to the site location and survey time, the matched LAIs were used to 

calculate the turnovers of foliage and turnovers of fine roots in the soil.  

3 Methods 

3.1 Calculating forest field NPP 

Forest field NPP was not directly provided by the forest field survey data, and it was calculated from four components (Chen 105 

et al., 2002; Xia et al., 2019):  

𝑁𝑃𝑃 =△ 𝐵𝑐 + 𝑀 + 𝐿𝑙 + 𝐿𝑓𝑟 ,            (1) 

where △ 𝐵𝑐 is the annual increment of total living biomass including stems, branches, and coarse roots; 𝑀 is the mortality per 

year that includes standing dead trees and fallen dead trees; 𝐿𝑙 is the turnover of leaves per year; and 𝐿𝑓𝑟  is the turnover of fine 

roots per year in the soil. Mortality (M) is ignored in this study due to a lack of observations at the ground plots and its small 110 

proportion of NPP (3.7% of NPP on average using the observations from the USA (He et al., 2012)). 

The annual increment of total living biomass was calculated from the annual biomass change (△ 𝐵) and the ratio from 

biomass to carbon (𝑐) (White et al., 2000; Xia et al., 2019). The 𝑐 was set to 0.5 following previous studies (Van Tuyl et al., 

2005; Fang et al., 2001; Pan et al., 2011).  

△ 𝐵𝑐 =△ 𝐵 × 𝑐,                                        (2) 115 

The calculation of the leaf renewal rate (𝐿𝑙) is related to leaf area index (𝐿𝐴𝐼), specific leaf area (𝑆𝐿𝐴), leaf turnover rate 

(𝑡𝑙), and carbon content (𝑐): 

𝐿𝑙 =
𝐿𝐴𝐼

𝑆𝐿𝐴
× 𝑡𝑙 × 𝑐,                                       (3) 

The amount of fine root regeneration is closely related to the amount of leaf regeneration, and hence the proportions of NPP 

allocated to fine root and leaf are related: 120 
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𝐿𝑓𝑟 = 𝑅𝑓𝑟,𝑙 × 𝐿𝑙 ,                                        (4) 

where, 𝑅𝑓𝑟,𝑙 represents the ratio of carbon allocated to new fine roots to carbon in new leaves. Table 1 provides detailed values 

for the coefficients of 𝑆𝐿𝐴, 𝑡𝑙, and 𝑅𝑓𝑟,𝑙  for different forest types (White et al., 2000). The coefficients of MF were calculated 

as the average value of the other four forest cover types.   

Table 1. The input parameters in the calculation of NPP for different forest types. SLA is the specific leaf area; 𝒕𝒍 is the foliage turnover 125 
ratio; 𝑹𝒇𝒓,𝒍 is the ratio of NPP to fine roots and leaves. EBF: Evergreen Broad-leaved Forests; ENF: Evergreen Needle-leaved Forests; DBF: 

Deciduous Broad-leaved Forests; DNF: Deciduous Needle-leaved Forests; MF: Mixed Forests. 

Forest Type 𝑺𝑳𝑨 (m2 kg C-1) 𝒕𝒍 (year-1) 𝑹𝒇𝒓,𝒍 (kg C kg C-1) 

EBF 32.000 1.000 1.200 

ENF 8.200 0.260 1.400 

DBF 32.000 1.000 1.200 

DNF 22.000 1.000 1.200 

MF 23.550 0.815 1.300 

3.2 Building forest NPP-age relationships 

Five models, including the SEM function, SDP function, L function, M function, and Γ function, were used to build the NPP-

age relationships among the five forest cover types and six regions in China.  130 

The SEM function (Chen et al., 2003; He et al., 2012) is as follows: 

𝑁𝑃𝑃(𝑖) = 𝑎[1 + (𝑏(𝑖 𝑐⁄ )𝑑 − 1) 𝑒(𝑖 𝑐⁄ )⁄ ] ,               (5) 

where a, b, c, and d are empirical coefficients to be determined from data, and 𝑁𝑃𝑃(𝑖) is NPP at the age of 𝑖.  

The SDP function (Tang et al., 2014) is as follows: 

𝑁𝑃𝑃(𝑖) = 𝑎 × 𝑖2 + 𝑏 × 𝑖 + c ,            (6) 135 

where a, b, and c are empirical coefficients. 

The L function (Peper et al., 2001; Semenzato et al., 2011; Dalgleish et al., 2015) is as follows: 

𝑁𝑃𝑃(𝑖) = 𝑎[log(𝑖 + 1)]𝑏,             (7) 

where a and b are empirical coefficients. 

The M function (Tang et al., 2014; Do et al., 2022) is as follows: 140 

𝑁𝑃𝑃(𝑖) = 𝑎 × 𝑖/(𝑏 + 𝑖),                           (8) 

where a and b are empirical coefficients. 

The Γ function (Tang et al., 2014) is as follows: 

𝑁𝑃𝑃(𝑖) = 𝑘0𝑖𝑘1𝑒𝑘2∙𝑖,                           (9) 
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where k0, k1, and k2 are empirical coefficients.  145 

The R2 and RMSE were used to determine the optimal model for building forest NPP-age curves in China, and the model 

with the highest R2 and smallest RMSE would be regarded as optimal. 

3.3 Determination of ten forest NPP-age curves 

Fig. 2 shows the statistics of forest field survey samples according to the three age groups in China. The age group of 0−50 

years had the most samples in all forest cover types and regions. The regions NE and N mainly contained DBF (highest 150 

number), ENF, DNF, and MF sites. The region NW was dominated by the samples of DBF (highest number) and ENF. The 

region SW has the most samples of ENF and identical samples of EBF, DBF, and MF. Region S mainly had the samples of 

ENF (highest number), EBF, and DBF. The samples of EBF and ENF were dominant in region E. The age group of 51−100 

years had fewer samples than the group of 0−50 years. EBF samples were mainly located in Region E and Region SW. The 

samples of ENF were identical for all six regions. The samples of DNF, DBF, and MF were dominant in the north (NE/N/NW) 155 

regions, and a few samples of DBF and MF were located in the south (SW/S/E) regions. The age group of >100 years had the 

lowest number of samples. The sample of ENF was dominant in the regions of NW and S. The sample of EBF was dominant 

in the regions E and S, and the sample of DNF was dominant in regions NW. 

In consideration of the survey sample and stand age distribution patterns, ten forest NPP-age curves were derived across the 

entire China. The samples of EBF were sufficient to separate three forest NPP-age curves for the north (NE/N/NW) regions, 160 

the SW region, and the S/E regions. The samples of ENF, BDF, and MF were sufficient to build two separate forest NPP-age 

curves for the north (NE/N/NW) and south (SW/S/E) regions. The samples of DNF were rare and mainly located in the north 

(NE/N/NW) regions, and there was only one forest growth curve for DNF in the entire China. 

 

Figure 2. The statistics of forest field survey samples according to age groups, regions, and forest cover types in China. The first horizontal 165 
coordinate (yellow) indicates the region; the second horizontal coordinate (blue) indicates the forest cover type; the bar indicates the number 

of samples; and the bar colour indicates the age group (purple is for 0 to 50 years, green is for 51 to 100 years, and orange is for >100 years). 

E: Northeast China; N: North China; NW: Northwest China; E: East China; S: South China; SW: Southwest China; EBF: Evergreen Broad-
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leaved Forests; ENF: Evergreen Needle-leaved Forests; DBF: Deciduous Broad-leaved Forests; DNF: Deciduous Needle-leaved Forests; 

MF: Mixed Forests. 170 

3.4 Uncertainty analysis 

The uncertainty of an NPP-age curve mainly comes from the calculation of forest field NPP, whose uncertainty was calculated 

from its four components (Yu et al., 2017) in Equation (1). It was represented as the sum of the variances of four independently 

calculated values based on forest age group:  

𝜎𝑁𝑃𝑃
2 =  𝜎△𝐵𝑐

2 + 𝜎𝑀
2 + 𝜎𝐿𝑙

2 + 𝜎𝐿𝑓𝑟

2 ,                               (10) 175 

where 𝜎NPP
2  is the uncertainty of the NPP-age curve, 𝜎△𝐵𝑐

2  is the uncertainty in the biomass measurements, 𝜎M
2  is the uncertainty 

in the mortality estimation, 𝜎𝐿𝑙
2  and 𝜎𝐿𝑓𝑟

2  are the uncertainties in the estimates of the turnovers of leaves and fine roots, 

respectively. As 𝐿𝑙 and 𝐿𝑓𝑟  were correlated, their errors were estimated as follows: 

𝜎𝐿𝑙+𝐿𝑓𝑟

2 =  𝜎𝐿𝑙
2 + 𝜎𝐿𝑓𝑟

2 + 2𝑐𝑜𝑣𝐿𝑙,𝐿𝑓𝑟
,                       (11) 

where 𝜎𝐿𝑙
2  is the standard deviation of the leaf renewal rate, 𝜎𝐿𝑓𝑟

2  is the standard deviation of the fine roots renewal rate, and 180 

𝑐𝑜𝑣𝐿𝑙,𝐿𝑓𝑟
 is the covariance between 𝐿𝑙  and 𝐿𝑓𝑟 , which was simplified as 𝑐𝑜𝑣𝐿𝑙,𝐿𝑓𝑟

 ≈  𝑐𝑜𝑣𝐿𝑙, 𝑅𝑓𝑟,𝑙∙𝐿𝑙
 =  𝑅𝑓𝑟,𝑙 × 𝑐𝑜𝑣𝐿𝑙,𝐿𝑙

 =

 𝑅𝑓𝑟,𝑙 × 𝜎𝐿𝑙
2  (He et al., 2012). 

4 Results 

Five models were compared to determine the best model for simulating forest NPP-age curves for different regions and forest 

cover types in China (Fig. 3). The three components used for the calculation of forest field NPP are shown in Fig. 4, where the 185 

annual increment of total living biomass, turnovers of foliage, and turnovers of fine roots in the soil were symbolized by hollow 

squares, triangles, and diamonds accompanied by their standard deviations, respectively. The annual increment of total living 

biomass constitutes the predominant share of NPP, markedly surpassing the sum of other components in NPP. Despite their 

relatively minor proportions, the turnover rates of foliage and the fine roots in the soil are essential components of NPP (He et 

al., 2012). Across various forest types, the annual increment of total living biomass rises in early forest development, peaks 190 

mid-term, and later declines, consistent with the trajectory of NPP with age.  

Each NPP-age curve was fitted by the five functions based on the average NPP calculated from the field survey samples 

with the same forest cover types and regions, and their performances were quantitatively described using RMSE and R2 (Fig. 

5). The highest R2 (labelled in green colour) and the lowest RMSE (labelled in red colour) indicate the best performance of 

one of the five models. The SEM function and Γ function performed prominently in all ten curves, perfectly capturing the NPP 195 

variations with forest age. The SEM function had the highest R2 and lowest RMSE for three curves of EBF (NE/N/NW), EBF 

(S/E), ENF (CHN), and had the lowest RMSE but comparable R2 for five curves including ENF (NE/N/NW), ENF (SW/S/E), 
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DBF (NE/N/NW), MF (NE/N/NW), and MF (SW/S/E). The Γ function had the highest R2 and lowest RMSE for two curves 

of EBF (SW) and DBF (SW/S/E). The NPP-age variations were not well captured by the SDP function, L function, and M 

function: the declining trend of forest NPP in old ages was not captured by the L and M functions, and five constructed curves 200 

by the SDP function exhibited unreasonable declines in NPP for older forest ages (with NPP sharply decreasing to 0 before 

reaching 200 years). Even though the SDP function achieved a relatively high R2 (<0.05 lower than the highest R2) in building 

two curves of EBF (SW) and DBF (SW/S/E), it had 13%−88% larger RMSE than the lowest RMSE. The M function also 

reached a relatively high R2 (<0.05 lower than the highest R2) in building four curves of EBF (S/E), ENF (NE/N/NW), DBF 

(NE/N/NW), and MF (NE/N/NW), but it had 29%−124% larger RMSE than the lowest RMSE.  205 

To further evaluate the performances of the SEM function and the Γ function, we extended the forest age to 300 years and 

normalized the built NPP-age curves by dividing each curve with its maximum NPP value (Fig. 6). The solid lines indicate the 

age period with field data (the rectangle in each line indicates the largest age in the field data), and the dashed lines indicate 

the predicted values at ages beyond the field data. The most significant differences between the normalized NPP-age curves 

simulated using these two functions appear in the extended old ages. The curves built from the SEM function exhibit stable 210 

forest NPP during old ages, while those from the Γ function display a distinct and continuous decrease in NPP as the forests 

become very old. For the two curves of EBF(SW) and DBF(SW/S/E) where the Γ function had the highest R2 and lowest 

RMSE, the forest NPP decreased to almost zero when the stand age reached 300 years. The forest NPP in the curves of 

ENF(SW/S/E), MF(SW/S/E), DBF(NE/N/NW), and DNF(CHN) built by the Γ function also decreased more than 50 % in old 

ages. These forest growth patterns are unreasonable, as they suggest that forests would stop growth completely at old ages and 215 

act as carbon sources. However, studies have demonstrated that old forests still act as carbon sinks, despite the controversial 

magnitude of the forest carbon sink ranging from 1.0 to 3.2 Mg C ha–1 yr–1 (Gundersen et al., 2021; Luyssaert et al., 2008). 

Ecologically, we would expect old forests to maintain stable conditions through self-renewal processes, such as the generation 

of new trees after the mortality of old trees (Harmon et al., 1990). The SEM function that produces stable NPP at old ages is 

therefore more reasonable in capturing the forest NPP-age variations during old ages. These results suggested that the SEM 220 

function was determined as the best forest NPP-age model (the model coefficients of the built ten forest NPP-age curves in 

China are provided in Table 2). 
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Figure 3. Comparing five models in building the forest NPP-age curves for different forest cover types and regions in China. In each panel, 

regions are shown in the upper right. The black hollow dots with error bars represent the average NPP and its one standard deviation. The 225 
five colourful lines indicate the curve-fitting from the five functions. E: Northeast China; N: North China; NW: Northwest China; E: East 

China; S: South China; SW: Southwest China; EBF: Evergreen Broad-leaved Forests; ENF: Evergreen Needle-leaved Forests; DBF: 

Deciduous Broad-leaved Forests; DNF: Deciduous Needle-leaved Forests; MF: Mixed Forests. 
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Figure 4. Distribution of the three components of NPP for different forest cover types and regions in China. Hollow points with error bars 230 
represent the components of NPP along with one standard deviation. △ 𝑩𝒄  is the annual increment of total living biomass including stems, 

branches, and coarse roots; 𝑳𝒍  is the turnover of leaves per year; and 𝑳𝒇𝒓 is the turnover of fine roots per year in the soil. E: Northeast China; 

N: North China; NW: Northwest China; E: East China; S: South China; SW: Southwest China; EBF: Evergreen Broad-leaved Forests; ENF: 

Evergreen Needle-leaved Forests; DBF: Deciduous Broad-leaved Forests; DNF: Deciduous Needle-leaved Forests; MF: Mixed Forests. 
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 235 

Figure 5. Quantitative descriptions of the five models in building the forest NPP-age curves for different forest cover types and regions in 

China. The highest R2 is labelled with green colour, and the lowest RMSE is labelled with red colour. E: Northeast China; N: North China; 

NW: Northwest China; E: East China; S: South China; SW: Southwest China; EBF: Evergreen Broad-leaved Forests; ENF: Evergreen 

Needle-leaved Forests; DBF: Deciduous Broad-leaved Forests; DNF: Deciduous Needle-leaved Forests; MF: Mixed Forests. 

Function R² RMSE Function R² RMSE Function R² RMSE

SEM 0.76 79.16 SEM 0.65 106.20 SEM 0.79 54.59

Γ 0.34 138.80 Γ 0.94 74.41 Γ 0.79 113.00

SDP 0.19 188.70 SDP 0.90 93.70 SDP 0.22 220.00

L 0.25 147.20 L 0.22 174.90 L 0.01 129.80

M 0.63 125.90 M 0.62 163.50 M 0.75 120.00

Function R² RMSE Function R² RMSE Function R² RMSE

SEM 0.88 21.42 SEM 0.72 56.52 SEM 0.93 21.24

Γ 0.94 44.42 Γ 0.81 76.28 Γ 0.98 27.02

SDP 0.60 115.30 SDP 0.23 151.90 SDP 0.88 70.95

L 0.26 59.02 L 0.02 112.60 L 0.59 59.75

M 0.92 48.11 M 0.62 103.20 M 0.94 44.85

Function R² RMSE Function R² RMSE Function R² RMSE

SEM 0.94 30.98 SEM 0.84 66.52 SEM 0.41 51.90

Γ 0.98 24.79 Γ 0.77 101.60 Γ 0.76 68.84

SDP 0.94 46.61 SDP 0.22 187.70 SDP 0.33 115.70

L 0.42 103.50 L 0.48 129.00 L 0.03 71.16

M 0.77 85.40 M 0.03 202.80 M 0.74 67.16

Function R² RMSE

SEM 0.82 30.49

Γ 0.95 48.87

SDP 0.61 140.40

L 0.01 92.68

M 0.86 77.26
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 240 

Figure 6. The normalized NPP-age curves built from the SEM function and the Γ function with the forest age extended to 300 years. The 

solid lines are for the age period with field data (the triangle in each line indicates the largest age with the field data), and the dashed lines 

are for the age period without field data. E: Northeast China; N: North China; NW: Northwest China; E: East China; S: South China; SW: 

Southwest China; EBF: Evergreen Broad-leaved Forests; ENF: Evergreen Needle-leaved Forests; DBF: Deciduous Broad-leaved Forests; 

DNF: Deciduous Needle-leaved Forests; MF: Mixed Forests. 245 

Table 2. The coefficients of the built forest NPP-age curves by the SEM function in China. a-d: the model coefficients; E: Northeast China; 

N: North China; NW: Northwest China; E: East China; S: South China; SW: Southwest China; EBF: Evergreen Broad-leaved Forests; ENF: 

Evergreen Needle-leaved Forests; DBF: Deciduous Broad-leaved Forests; DNF: Deciduous Needle-leaved Forests; MF: Mixed Forests. 

Forest Type 𝒂 𝐛 𝒄 𝐝 

EBF(NE/N/NW) 687.549 0.094 7.613 3.643 

ENF(SW) 687.726 0.126 11.467 3.310 

EBF(S/E) 680.323 0.280 9.108 3.032 

ENF(NE/N/NW) 460.192 0.045 13.007 3.809 

ENF(SW/S/E) 378.106 2.828 31.679 0.721 

DBF(NE/N/NW) 429.184 1.353 26.832 0.995 

DBF(SW/S/E) 355.632 0.097 9.508 4.153 

DNF(CHN) 303.573 2.029 15.739 2.425 

MF(NE/N/NW) 442.899 0.105 10.750 3.290 

MF(SW/S/E) 403.397 1.926 22.778 1.245 
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5 Discussion 

In this study, we derived ten forest NPP-age curves for six regions and five forest cover types in China based on 3121 forest 250 

field samples (Fang et al., 2018) and tested five mathematical models including the SEM function, SDP function, L function, 

M function, and Γ function for simulating the curves. The SEM function and Γ function performed prominently in fitting all 

ten curves, nearly perfectly capturing NPP variations with forest age; while for the SDP function, L function, and M function, 

the NPP-age variations were not well captured. The declining trend of forest NPP in old ages was not captured by the L function 

and M function, while the SDP function exhibited a sharp decline of NPP to 0 before reaching 200 years in five forest NPP-255 

age curves. These results were consistent with the study that compared NPP-age relationships in boreal and temporal forests 

constructed using the SDP function, L function, M function, and Γ function (Tang et al., 2014). Further analysis using the 

normalized NPP-age curves with forest age extended to 300 years suggested that the SEM function was generally more 

applicable than the Γ function for tracking NPP variation with forest age. In particular, the SEM function produces stable NPP 

at very old ages, while the Γ function unreasonably forces NPP to be zero at old ages.  260 

5.1 The mechanism of NPP-age variations 

The forest NPP exhibits a rapid increase during young ages, reaching a peak in a middle age, and subsequently declining in 

old age (Chen et al., 2003; Yu et al., 2017; He et al., 2012). Previous understanding attributed the decline in NPP in aging 

forests primarily to the reduction in gross primary productivity (GPP) as the forest ages, while autotrophic respiration (Ra) 

increases with age (Tatuo KIRA and SHIDEI, 1967; Odum, 1969). However, recent studies have challenged this classical 265 

view, revealing that the age-driven decline in NPP is primarily driven by the decrease in both GPP and Ra as forests age, with 

GPP declining at a faster rate than Ra (Drake et al., 2011; Ryan et al., 1997, 2004; Ryan and Waring, 1992; Tang et al., 2014). 

This decline in forest NPP during old ages can be attributed to nutrient limitation and ecosystem succession (Camenzind et al., 

2018; Fisher et al., 2012; Gao et al., 2018; Gough et al., 2008). However, old forests can maintain stable growth conditions 

through self-renewal and continue to accumulate carbon with a magnitude of carbon sinks ranging from 1.0 to 3.2 Mg C ha–1 270 

yr–1 (Gundersen et al., 2021; Luyssaert et al., 2008). 

5.2 Comparison to the forest NPP-age curves built previously in China 

The forest NPP-age curve could be depicted by a key characteristic: the age at which forest NPP peaks (shortened as peak NPP 

age). The ten built forest NPP-age curves by the SEM function in this study were compared to the forest NPP-age curves built 

previously in China using this characteristic (Table 3). Climate factors have a significant influence on the peak NPP age (Zhang 275 

et al., 2017). The NPP-age curves of forests in southern regions, characterized by higher temperatures, generally exhibit an 

earlier age of peak NPP compared to forests in the northern regions with lower temperatures.  

EBF achieves its highest NPP at 30 years in the regions of NE/N/NW/S/E, while this peak occurs at 42 years in region SW, 

similar to the previously reported average peak age of 40 years for EBF in China (Wang et al., 2011). The peak NPP for ENF 
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is achieved at 55 years in the northern regions, while it occurs at 34 years in the southern regions, aligned with previous reports 280 

where the peak age in the northern regions is 21 years later compared to the southern regions (Xu et al., 2010). But in the 

southern regions, our peak NPP age of 34 years was significantly different from the 13 years reported by Wang et al. (2011). 

However, their fitting points showed a significant bimodal distribution around 13 and 53 years. Considering this bimodal 

distribution, the average peak NPP age could be 33 years, more closely to our findings.  

DBF, predominantly located in the northern regions, peaks in NPP at the age of 47, slightly later than the southern regions 285 

where the peak is observed at 41 years. These two values were much smaller than the 122 years reported by Wang et al. (2011), 

where the NPP-age curve for DBF was built by the SDP function instead of the SEM function. This large difference for DBF 

was also noticed by He et al. (2012), and our results were consistent with the peak NPP age of 27 ± 16.5 for BDFs in America 

(He et al., 2012). 

DNF, 60.2% located in the northern regions, reaches peak NPP at the age of 40 years, congruent with the peak growth age 290 

derived from the same region by other researchers using the Logistic stand growth model with National Forest Inventory (NFI) 

data (Xu et al., 2010). Our peak age differed by 14 years from the 54 years reported by  Wang et al. (2011). However, their 

fitting points demonstrated that the peak NPP spanned ages from 20 to 70 years (Wang et al., 2011), with an average of 45 

years, which aligns more closely with our peak NPP age.  

MF reached the peak NPP at the age of 40 in the northern regions and 39 years in the southern regions, presenting a deviation 295 

of less than 8 years compared to Wang et al. (2011) and a consistent peak NPP reported in Heilongjiang province by Yu et al. 

(2017). The peak NPP age of our national NPP-age curve shows substantial differences from the peak NPP ages identified by 

Yu et al. (2017) and Zheng et al. (2019) in their respective studies on the Heilongjiang and Zhejiang provinces. This could be 

attributed to significant variations in forest growth patterns nationwide compared to these specific provinces, arising from 

various factors including but not limited to forest species, climatic conditions, and soil types (Dai et al., 2011; Zhao and Zhou, 300 

2006; Ji et al., 2020; Xiaoyun et al., 2018). 

Table 3. Comparison of the forest NPP-age curves built previously in China at the peak NPP age. E: Northeast China; N: North China; NW: 

Northwest China; E: East China; S: South China; SW: Southwest China; EBF: Evergreen Broad-leaved Forests; ENF: Evergreen Needle-

leaved Forests; DBF: Deciduous Broad-leaved Forests; DNF: Deciduous Needle-leaved Forests; MF: Mixed Forests; ENF-S: ENF in the 

tropics and subtropics; MBF: Mixed Broad-leaved Forests; ENF-H: ENF in Heilongjiang province, including Pinus sylvestris and Pinus 305 
koraiensis; DBF-H: DBF in Heilongjiang province, including Quercus mongolica, Planted populus, Populus davidiana, Betula davuria, Tilia, 

and Betula platyphylla; DNF-H: Larix gmelinii in Heilongjiang province; MBF-H: Mixed Broad-leaved Forests in Heilongjiang province; 

MNF-H: Mixed Needle-leaved Forest in Heilongjiang province; MF-H: Mixed Forests in Heilongjiang province; NF-Z: Needle-leaved 

Forest in Zhejiang province; BF-Z: Broad-leaved Forest in Zhejiang province.  

Study area Forest type China regions Methods Age at peak NPP (year) Source 

China 

EBF NE/N/NW 

SEM  

30 

This study 

SW 42 

S/E 30 

ENF NE/N/NW 55 

SW/S/E 34 
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DBF NE/N/NW 47 

SW/S/E 41 

DNF CHN 40 

MF NE/N/NW 40 

SW/S/E 39 

China 

EBF CHN SEM  40 

Wang et al. (2011) 

ENF-S  SW/S/E SEM  13 

DBF CHN SDP  122 

DNF CHN SEM 54 

MBF CHN SEM 32 

Heilongjiang 

ENF-H 

--- SEM 

19 ± 4.2 

Yu et al. (2017) 

DBF-H 11 ± 5.1 

DNF-H 20 ± 2.7 

MBF-H 11 ± 2.0 

MNF-H 39 ± 7.4 

MF-H 16 ± 1.9 

Zhejiang 
NF-Z 

--- SEM 
23 

Zheng et al. (2019) 
BF-Z 15 

5.3 Limitations and future modifications 310 

There were also some limitations in this study. First, considering the sample numbers, distributions, and age groups, only ten 

forest NPP-age curves were derived across the entire China. Except for DNF, the differences in forest NPP-age curves between 

the southern and northern regions of China (Dai et al., 2011) were considered for all forest cover types. For EBF, its samples 

were sufficient to separate two forest NPP-age curves in southern China: one is for region SW, and the other is for the regions 

of S/E. The constructed forest NPP-age curve may not be universally applicable to all areas within the region or specific forest 315 

types. For future modifications, it is advisable to incorporate additional samples and develop separate NPP-age curves tailored 

to smaller regions. 

Second, in the calculation of the field NPP, we did not account for the mortality due to the lack of data and its small 

proportion of NPP (3.7% on average, calculated using the data in America (He et al., 2012)). The turnovers of leaves and fine 

roots, which were also two important components of the field NPP, were calculated based on the assumption that fine root 320 

production is linearly correlated with the production of leaves (Litton et al., 2007; He et al., 2012). This assumption was 

supported by the correlation between new fine root carbon and new leaf carbon indicated by the field measurements (Børja et 

al., 2008; Burkes et al., 2003; Claus and George, 2005; DesRochers and Lieffers, 2001). It should be noted that fine root 

production could also be affected by other factors such as soil texture, moisture, and climate (Zerihun and Montagu, 2004), 

which might be calculated from other carbon allocation methods in future modifications (White et al., 2000).  325 
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Last, the site condition was not considered in building the forest NPP-age curves. It has been shown that the site condition 

can impact the forest NPP-age variations, and better site conditions can result in faster growth of NPP in young age, greater 

peak NPP, and steeper decline of NPP in old ages (Yu et al., 2017; Wang et al., 2018). However, the lack of site condition data 

impeded our ability to build separate forest NPP-age curves according to the site conditions. Regardless of these limitations, 

this study still provides valuable insights into forest NPP-age variations, and collecting more comprehensive data in the future 330 

can further enhance the construction of forest NPP-age curves. 

6 Conclusions 

In this study, we investigated the relationship between forest NPP and age in China by using 3121 forest field survey samples 

and remote sensing data. Ten forest NPP-age curves were derived for all China’s forests based on the spatial distributions of 

forest cover type, biomass, and age of the field survey data. Five models, including the SEM function, SDP function, L function, 335 

M function, and Γ function, were compared to determine the optimal model for building the forest NPP-age curves in China. 

The comparison against the survey data showed that the SEM function and the Γ function performed much better than the 

other three models, and through extending forest ages to 300 years, we found that the SEM function was more reasonable than 

the Γ function in capturing stable NPP at old ages. The built forest NPP-age curves offer an independent and comprehensive 

source of information for forest growth estimation and can facilitate forest carbon modelling and future carbon projections in 340 

China and elsewhere. 
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